If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-44x=0
a = 8; b = -44; c = 0;
Δ = b2-4ac
Δ = -442-4·8·0
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-44}{2*8}=\frac{0}{16} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+44}{2*8}=\frac{88}{16} =5+1/2 $
| x=2(x+2)+3(x-2) | | F(x)=5/8x+5 | | 6y-7=-7.3 | | 3(11-2x)=5x+11 | | 3=7–2q | | -x+8=6/3 | | 4n=9n+35 | | 8=9t-6t+2 | | 9(b+3)=4b-3 | | 7(4x-5)=42x+1 | | 1.4u-10.75=13.4u+19.25 | | -15t-17=12+19-18t | | 7y-3-5y=9 | | -15-17=12+19-18t | | y=5/2+2 | | 18069333.33333=440•440•h | | -14+13j=11j | | -5(x-17)=-95 | | 3w+7(4w-5)=14w-1 | | −7x=−56 | | 16y-19=14+19y | | 3n+7=24 | | -2x+5(x+1)=14 | | 11-1/4x=11 | | 6n-4=2n+12 | | 20=−5x | | 7x-4x+x-20=12 | | 1.7p+7.6=-2.3p | | -4.2+31.5b=65.1 | | -2p+5-3p=25 | | 19g=20g+2 | | 6=2(2x+1)-2x |